
VARIO AO 1/SF

I/O-Erweiterungsmodul mit einem analogen Ausgang

Bedienungsanleitung

02/2003

VARIO AO 1/SF

Alle Artikel des VARIO-Systems werden inclusive Stecker und Beschriftungsfeld ausgeliefert

Auf dem Modul darf nur ein Ausgang belegt werden! Benutzen Sie zum Anschluss des Aktors den Stecker mit Schirmanschluss.

Diese Anleitung ist nur gültig in Verbindung mit den Beschreibungen der verwendeten Buskoppler.

Funktionsbeschreibung

Das Modul ist zum Einsatz innerhalb eines VARIO-Systems vorgesehen. Es dient zur Ausgabe analoger Spannungs- oder Stromsignale. Die Signale werden mit einer Auflösung von 16 Bit zur Verfügung gestellt.

Merkmale

- Ein analoger Signalausgang zum wahlweisen Anschluss von Spannungs- oder Stromsignalen
- Anschluss der Aktoren in 2-Leitertechnik mit Schirmanschluss
- Zwei Strombereiche, ein Spannungsbereich:
 0 mA bis 20 mA, 4 mA bis 20 mA
 0 V bis 10 V
- Prozessdaten-Update inklusive Wandlungszeit des Digital-Analog-Wandlers < 1 ms

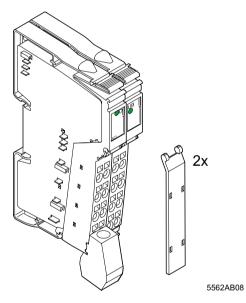
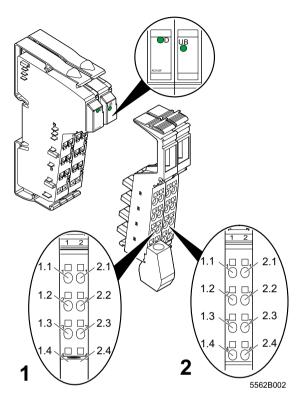



Bild 1 Modul VARIO AO 1/SF mit aufgesetzten Steckern zur Ausgabe von Spannungen

Lokale Diagnose- und Status-Anzeigen

Bez.	Farbe	Bedeutung
D	grün	Busdiagnose
UB	grün	Peripheriespannung für Analog-Klemmen vorhanden (Stromstufe)

Klemmenbelegung

Ste- cker	Klemm- punkt	Signal	Belegung
1	1.1	U	Spannungsausgang 0 V bis 10 V
	2.1	-	nicht belegt
2	1.1	I	Stromausgang 0 mA bis 20 mA
	2.1	I	Stromausgang 4 mA bis 20 mA
1	1.2, 2.2	-	nicht belegt
und	1.3, 2.3	GND	Masse
2	1.4, 2.4	Schirm	Schirmanschluss

Bild 2 VARIO AO 1/SF mit zugehörigen Steckern

Montagevorschrift

Ein hoher Strom durch die Potenzialrangierer U_M und U_S hat zur Folge, dass sich die Potenzialrangierer erwärmen und somit die Klemmeninnentemperatur steigt. Um den Strom durch die Potenzialrangierer der Analog-Klemmen möglichst gering zu halten, beachten Sie folgende Vorschrift:

Bauen Sie einen eigenen Hauptkreis für alle Analog-Klemmen auf!

Falls das in Ihrer konkreten Anwendung nicht möglich ist und Sie Analog-Klemmen in einem Hauptkreis mit anderen Klemmen einsetzen, platzieren Sie die Analog-Klemmen hinter allen anderen Klemmen am Ende des Hauptkreises.

Beachten Sie dazu bitte die Derating-Kurve auf Seite 12.

Internes Prinzipschaltbild

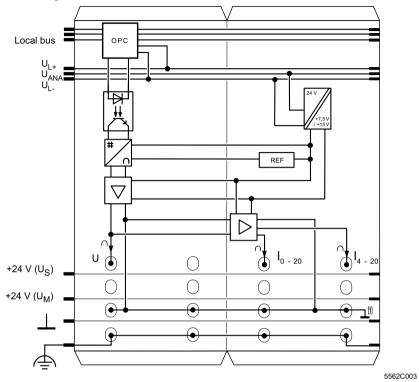


Bild 3 Interne Beschaltung der Klemmpunkte

Legende:

Potenzialtrennung

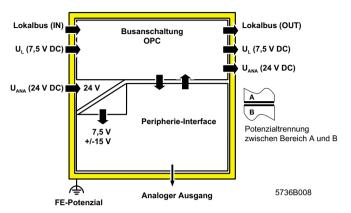


Bild 4 Potenzialtrennung der einzelnen Funktionsbereiche

Anschlusshinweise

Schließen Sie den analogen Aktor **grundsätzlich** mit paarig verdrillten und geschirmten Leitungen an.

Legen Sie die Schirmung an der Klemme einseitig auf PE. Setzen Sie dazu den Schirm beim Modul am Kabel ab und schließen Sie ihn an der Klemme über die Schirmanschlussschelle an. Über die Schelle wird der Schirm modulseitig direkt mit FE verbunden.

Bei Verwendung von Leitungen mit mehr als 10 m Länge in störbelasteter Umgebung wird empfohlen, den Schirm am Aktor zusätzlich über ein RC-Glied mit dem FE-Potenzial zu verbinden. Der Kondensator C sollte typischerweise den Wert 1 nF bis 15 nF haben, der Widerstand R sollte einen Wert von mindestens 10 $M\Omega$ haben.

Verwenden Sie zum Anschluss des Aktors den Peripheriestecker mit Schirmanschluss. Auf der ungenutzten Sockelseite können Sie einen der Stecker verwenden, die in den Bestelldaten aufgeführt sind. Das Aussehen des Moduls in Abhängigkeit vom benutzten Ausgang ist in Bild 5 und Bild 6 jeweils links oben dargestellt.

4 9404-040-67618

Anschlussbeispiele

Verwenden Sie zum Anschluss des Aktors den Stecker mit Schirmanschluss. In Bild 5 und Bild 6 ist der Anschluss schematisch (ohne Schirmstecker) dargestellt.

Spannungsausgabe

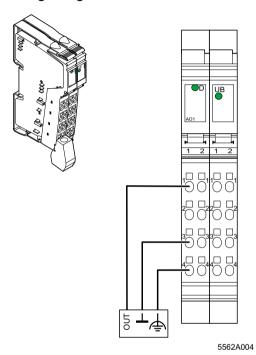


Bild 5 Aktor am Spannungsausgang 0 V bis 10 V in 2-Leitertechnik mit Schirmanschluss

Stromausgabe

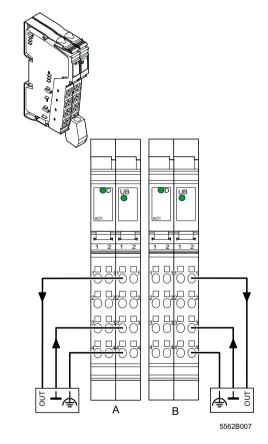


Bild 6 Anschluss eines Aktors an den Stromausgängen in 2-Leitertechnik mit Schirmanschluss

- A Signale für Aktor am Stromausgang 0 mA bis 20 mA
- B Signale für Aktor am Stromausgang 4 mA bis 20 mA

Programmierdaten

Generell

ID-Code	7D _{hex} (125 _{dez})
Längen-Code	01 _{hex}
Eingabe-Adressraum	0 Byte
Ausgabe-Adressraum	2 Byte
Parameterkanal (PCP)	0 Byte
Registerlänge (Bus)	2 Byte

Verschiedene Bussysteme

Die Programmierdaten für andere Bussysteme entnehmen Sie bitte dem zugehörigen elektronischen Gerätedatenblatt (GSD, EDS).

Prozessdatenworte

Zuordnung der Klemmpunkte zum Prozessdaten-Ausgangswort

"Wort.Bit"-	Wort		Wort x														
Sicht	Bit 15 14		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
"Byte.Bit"-	Byte	Byte 0							Byte 0 Byte 1								
Sicht	Bit	7	6 5 4 3 2 1 0 7 6 5 4 3 2 1							1	0						
Klemm-	Signal	Klei	lemmpunkt 1.1: Spannungsausgang														
punkte	Signalbezug	Klei	Klemmpunkt 1.3, 2.3														
Steckplatz 1	Schirmung (FE)	Kleı	nmp	unk	t 1.4	, 2.4											
Klemm- punkte	Signal				t 1.1 t 2.1												
Steckplatz 2	Signalbezug	Klemmpunkt 1.3, 2.3															
	Schirmung (FE)	Klei	Klemmpunkt 1.4, 2.4														

Prozessdaten-Ausgangswort OUT

Über das Prozessdaten-Ausgangswort wird in jedem Zyklus der Ausgabewert vorgegeben.

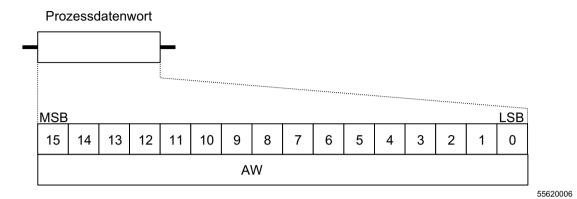


Bild 7 Prozessdaten-Ausgangswort

AW Analogwert

MSB höchstwertiges Bit (Most Significant Bit)

LSB niederwertigstes Bit (Less Significant Bit)

Alle Ausgabewerte werden in 16 Bit dargestellt.

Markante Vorgabewerte im Prozessdatenwort finden Sie in den folgenden Tabellen.

Verwendete Abkürzungen in den folgenden Tabellen:

QS Quantisierungsschritt(e) ABE Ausgabebereichsendwert

MSB höherwertiges Bit (Most Significant Bit) LSB niederwertiges Bit (Less Significant Bit)

Prozessdaten-Ausgangs	Prozessdaten-Ausgangswort OUT für den Spannungsausgang 0 V bis 10 V (Beispiel)																	
Spannungsausgang	Analogwert in	Prozessdaten-Ausgangswort																
0 V bis 10 V	Volt	hex.	bin	är	(Zw	eie/	rko	mp	lem	ent	t)							
			MS	βB													LS	SB
			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
10 V minus 1 QS	9,99985	FFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10 V minus 2 QS	9,99969	FFFE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Halber ABE	5,0000	8000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 QS	0,153 mV	0001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Null	0,0000	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Prozessdatenwort-Ausga	Prozessdatenwort-Ausgangswort OUT für den Stromausgang 0 mA bis 20 mA (Beispiel)																	
Stromausgang	Analogwert in	Analogwert in Prozessdaten-Ausgangswort																
0 mA bis 20 mA	mA	hex.	bin	är	(Zw	eie	rko	mp	lem	ent	:)							
			MS	SB													LS	SB
			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
20 mA minus 1 QS	19,9997	FFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20 mA minus 2 QS	19,9994	FFFE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Halber ABE	10,000	8000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 QS	0,305 μΑ	0001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Null	0,0000	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Prozessdaten-Ausgangs	Prozessdaten-Ausgangswort OUT für den Stromausgang 4 mA bis 20 mA (Beispiel)																	
Stromausgang	Analogwert in	Analogwert in Prozessdaten-Ausgangswort					t											
4 mA bis 20 mA	mA	hex.	bin	är	(Zw	eie	rko	mp	lem	ent	t)							
			MS	SB													LS	SB
			15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
20 mA minus 1 QS	19,99998	FFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
20 mA minus 2 QS	19,99995	FFFE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Halber ABE	12,0000	8000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 mA plus 1 QS	4,000244	0001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Ausgabebereichsanfang	4,0000	0000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Ausgangsverhalten des Spannungs- oder Stromausgangs

Berücksichtigen Sie bei der Projektierung Ihrer Anlage das Verhalten des Ausgangs im Fehlerfall!

Schaltvorgang/	Rand-	Prozess-								
Zustand der Versorgungs- spannung	bedingung	datenwort OUT (hex)	0 V bis 10 V	0 mA bis 20 mA	4 mA bis 20 mA					
U _{ANA} von 0 V auf 24 V	U _L = 0 V	xxxx	0 V	0 mA	4 mA					
U _{ANA} von 24 V auf 0 V	U _L = 7,5 V	xxxx	0 V	0 mA	0 mA					
Bus im Stopp	U _{ANA} = 0 V	XXXX	0 V	0 mA	0 mA					
Bus im Stopp	U _{ANA} = 24 V	xxxx		letzten Wert halter	1					

U_{ANA} Analog-Versorgungsspannung der Klemme

U_I Versorgungsspannung der Modulelektronik (Logikversorgung)

xxxx Beliebiger Wert im Bereich von 0000_{hex} bis FFFF_{hex}.

Das Verhalten bzw. der Status des Ausgangs hängt davon ab, welcher Ausgang benutzt wird.

Reaktion auf ein Hardware-Signal der Steuerung oder des Rechners für verschiedene Steuerungs- oder Rechnersysteme

Signal	Steuerungs-	Zustand nach	dem Schaltvor	gang
	oder Rechnersystem	Prozessdaten-	analoger	Ausgang
	Reclinersystem	Ausgangswort OUT	U _{out}	l _{out}
NORM*	AEG-Schneider Automation	0000	0 V	0 mA / 4 mA
BASP	Siemens S5	0000	0 V	0 mA / 4 mA
CLAB	Bosch	0000	0 V	0 mA / 4 mA
SYSFAIL	VME	0000	0 V	0 mA / 4 mA
SYSFAIL	PC	0000	0 V	0 mA / 4 mA
CLEAR OUT	Moeller IPC	0000	0 V	0 mA / 4 mA

^{*} Das NORM-Signal kann auf den Anschaltbaugruppen für AEG-Schneider-Automation-Steuerungen z. T. auch so eingestellt werden, dass das Prozessdaten-Ausgangswort OUT und der analoge Ausgang den letzten Wert halten.

Der Zustand des Stromausgangs hängt vom ausgewählten Bereich ab.

Reaktion des Spannungs- oder Stromausgangs auf einen Steuerbefehl der Anschaltbaugruppe

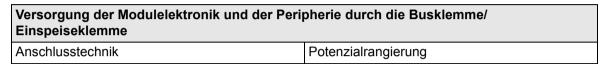
Befehl	Zustand nac	h dem Schaltvorgar	ng
	Prozessdaten-Ausgangswort	analoger	Ausgang
	OUT	U _{out}	l _{out}
STOP	letzten Wert halten	letzten Wert halten	letzten Wert halten
ALARM-STOP (Reset)	letzten Wert halten	letzten Wert halten	letzten Wert halten

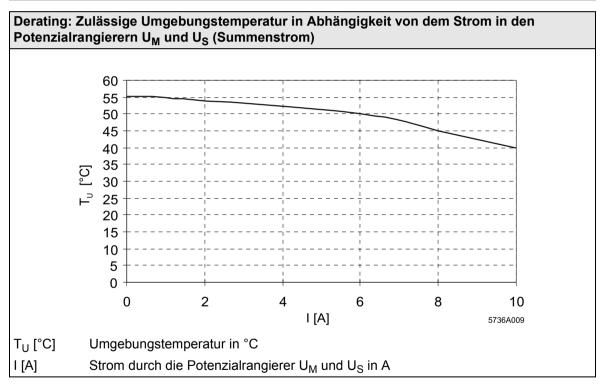
Technische Daten

Allgemeines	
Gehäusemaße (Breite x Höhe x Tiefe)	24,4 mm x 120 mm x 71,5 mm
Gewicht	90 g (ohne Stecker), 100 g (inklusive Stecker)
Betriebsart	Prozessdatenbetrieb mit 1 Wort
Anschlussart der Aktoren	2-Leitertechnik
Zulässige Temperatur (Betrieb)	-25 °C bis +55 °C
Zulässige Temperatur (Lagerung/Transport)	-25 °C bis +85 °C
Zulässige Luftfeuchtigkeit (Betrieb)	75 % im Mittel, 85 % gelegentlich

Im Bereich von -25 °C bis +55 °C sind geeignete Maßnahmen gegen erhöhte Luftfeuchtigkeit (> 85 %) zu treffen.

Zulässige Luftfeuchtigkeit (Lagerung/Transport) 75 % im Mittel, 85 % gelegentlich


Eine leichte Betauung von kurzer Dauer darf gelegentlich am Außengehäuse auftreten, z. B. wenn die Klemme von einem Fahrzeug in einen geschlossenen Raum gebracht wird.


Zulässiger Luftdruck (Betrieb)	80 kPa bis 106 kPa (bis zu 2000 m üNN)
Zulässiger Luftdruck (Lagerung/Transport)	70 kPa bis 106 kPa (bis zu 3000 m üNN)
Schutzart	IP 20 nach IEC 60529
Schutzklasse	Klasse 3 gemäß VDE 0106, IEC 60536

Abweichungen zu allgemeinen Angaben zum VARIO System		
Mechanische Anforderungen		
Schockprüfung nach EN 60068-2-27; IEC 60068-2-27	Belastung 15g über 11 ms, halbe Sinuswelle, drei Schocks je Raumrichtung und Orientierung Belastung 25g über 6 ms, halbe Sinuswelle, drei Schocks je Raumrichtung und Orientierung	

Schnittstelle	
Lokalbus	über Datenrangierung

Leistungsbilanz		
Logikspannung U _L	7,5 V	
Stromaufnahme aus U _L	30 mA typisch; 40 mA maximal	
Peripherie-Versorgungsspannung U _{ANA}	24 V DC	
Stromaufnahme an U _{ANA}	50 mA typisch; 65 mA maximal	
Leistungsaufnahme gesamt	1,425 W (typisch)	

Analoger Ausg	ang		
Anzahl		1; konfiguriert sich in Abhängigkeit vom benutzten Klemmpunkt	
Signale/Auflösu	ng im Prozessdatenwort (Quantis	sierung)	
Spannung	0 bis 10 V	0 bis 9,99985 V	0,153 mV/LSB
Strom	0 bis 20 mA	0 bis 19,9997 mA	0,305 μA/LSB
	4 bis 20 mA	4 bis 19,99976 mA	0,244 µA/LSB
Messwertdarste	llung	16 Bit Straight Binary	
Grundfehlergrei	nze im Strombereich	±0,05 % typisch	
Ausgangslast			
Spannungsau	sgang	minimal 2 k Ω	
Stromausgang		maximal 500 Ω	
Prozessdaten-U des Digital-Anal	Ipdate inklusive Wandlungszeit og-Wandlers	it 1 Buszyklus (abhängig von der Buskonfiguration); < 1 ms	
Slew Rate (> 99	% vom Endwert)	< 10 µs	

Toleranz- und Temperaturverhalten des Spannungsausgangs (Die Fehlerangaben beziehen sich auf den Ausgabebereichsendwert von 10 V.)			
	typisch	maximal	
Fehler bei 23 °C			
Gesamte Offset-Spannung	±0,03 %	±0,05 %	
Verstärkungsfehler	±0,10 %	±0,15 %	
Differentielle Nichtlinearität	±0,0012 %	±0,003 %	
Gesamtfehler bei 23 °C	±0,15 %	±0,25 %	
Temperaturverhalten bei -25 °C bis 55 °C			
Offset-Spannungsdrift T _{KVO}	±10 ppm/K	±65 ppm/K	
Verstärkungsdrift T _{KG}	±30 ppm/K	±35 ppm/K	
Gesamte Spannungsdrift $T_{Kges} = T_{KVO} + T_{KG}$	±40 ppm/K	±100 ppm/K	
Gesamtfehler der Spannungsausgänge (-25 °C bis 55 °C) Offset- + Verstärkungs- + Linearitäts- + Driftfehler	±0,30 %	±0,60 %	

Toleranz- und Temperaturverhalten des Stromausganges (0 mA bis + 20 mA) (Die Fehlerangaben beziehen sich auf den Ausgabebereichsendwert von 20 mA.)			
	typisch	maximal	
Offset-Fehler bei 23 °C			
Offset-Strom I _{os}	±0,05 %	±0,15 %	
Verstärkungsfehler	±0,09 %	±0,25 %	
Differentielle Nichtlinearität	±0,0012 %	±0,003 %	
Gesamtfehler bei 23 °C	±0,15 %	±0,25 %	
Temperaturverhalten bei -25 °C bis 55 °C	<u> </u>		
Offset-Stromdrift T _{KIO}	±25 ppm/K	±65 ppm/K	
Verstärkungsdrift T _{KG}	±10 ppm/K	±35 ppm/K	
Gesamte Stromdrift T _{Kges} = T _{KIO} + T _{KG}	±35 ppm/K	±100 ppm/K	

Toleranz- und Temperaturverhalten des Stromausganges (4 mA bis + 20 mA) (Die Fehlerangaben beziehen sich auf den Ausgabebereichsendwert von 20 mA.)		
	typisch	maximal
Offset-Fehler bei 23 °C	<u>.</u>	
Offset-Strom I _{os}	±0,15 %	±0,45 %
Verstärkungsfehler	±0,25 %	±0,45 %
Differentielle Nichtlinearität	±0,003 %	±0,005 %
Gesamtfehler bei 23 °C	±0,25 %	±0,46 %
Temperaturverhalten bei -25 °C bis 55 °C		
Offset-Stromdrift T _{KIO}	±28 ppm/K	±70 ppm/K
Verstärkungsdrift T _{KG}	±15 ppm/K	±40 ppm/K
Gesamte Stromdrift T _{Kges} = T _{KIO} + T _{KG}	±43 ppm/K	±110 ppm/K

Zusätzliche Toleranzen unter dem Einfluss elektromagnetischer Felder			
Art der elektromagnetischen Störung	Kriterium	typische relative Abweichung vom Messbereichsendwert	
Elektromagnetische Felder Feldstärke 10 V/m nach EN 61000-4-3 / IEC 61000-4-3	A	< 1 %	
Schnelle transiente Störungen (Burst) Versorgung 2 kV, Ausgang 1 kV nach EN 61000-4-4 / IEC 61000-4-4	В	< 1 %	
Leitungsgeführte Störgrößen Klasse 3 (Prüfspannung 10 V) nach EN 61000-4-6 / IEC 61000-4-6	A	< 6 %	

Schutzeinrichtungen	
Keine	

Potenzialtrennung/Isolation der Spannungsbereiche

Die Potenzialtrennung der Logikebene vom Peripheriebereich wird durch den DC/DC-Wandler gewährleistet.

Gemeinsame Potenziale

24-V-Peripheriespannung, 24-V-Segmentspannung und GND liegen auf demselben Potenzial. FE stellt einen eigenen Potenzialbereich dar.

Getrennte Potenziale im System aus Busklemme/Einspeiseklemme und E/A-Klemme

- Prüfstrecke	- Prüfspannung
7,5-V-Versorgung (Buslogik), 24-V-Versorgung U _{ANA} / Peripherie	500 V AC, 50 Hz, 1 min
7,5-V-Versorgung (Buslogik), 24-V-Versorgung U _{ANA} / Funktionserde	500 V AC, 50 Hz, 1 min
24-V-Versorgung (Peripherie) / Funktionserde	500 V AC, 50 Hz, 1 min

Fehlermeldungen an das übergeordnete Steuerungs- oder Rechnersystem			
Ausfall oder Unterschreiten der Logikspannung ja, Peripheriefehlermeldung an den Buskoppler			
U_L			

9404-040-67618 **15**

Bestelldaten

Beschreibung	Artikel	Bestell-Nr.
Modul mit einem analogen Ausgang zur wahlweisen Ausgabe von Spannungs- oder Stromsignalen; Stecker und Beschriftungsfelder inklusive	VARIO AO 1/SF	KSVC-103-00211

PMA Prozeß- und Maschinen-Automation GmbH

Miramstrasse 87 34123 Kassel Germany

+ 49 - (0) 561 505 - 1307

+ 49 - (0) 561 505 - 1710

www.pma-online.de