$1 / 16-1 / 8-1 / 4$ DIN LIMIT CONTROLLERS
CONCISE PRODUCT MANUAL (59333-6)
CAUTION: Installation should be only performed by technically competent personnel. Local Regulations
regarding electrical installation \& safety must be observed.

1. INSTALLATION

The models covered by this manual have three different DIN case sizes refer to
section 9). Some installation details vary between models. These differences have been clearly shown.
Note: The functions described in sections 2 thru 8 are common to all models.

To access module A, first detach the PSU and CPU boards from the front by liftion
tirst the upper, and then lower mounting struts. Gently separate the boards. a. Plug the equuired option modulies into the correct connectors, as shown below. Locate the module tongues in the corresponding slot oct the oppopsite board.
c. Hold the main boards together while relocating back on the mounting struts. Replace the instramentogethether whilie relocating back on the mounting struts.
in
in the housing Note: Option modulles are automatically deteceted at power up.
Option Module Connectors

The mounting panel must be rigid, and may be up to
$6.0 \mathrm{~mm}(0.25$ inch) thick. Cut-out sizes are: Cut-Out Dim A
$1 / 16 \& 1 / 8 \mathrm{Din}=45 \mathrm{~mm}$
$1 / 4 \mathrm{Din}=92 \mathrm{~mm}$$\quad \begin{gathered}\text { Cot-Out Dim } \\ 1 / 16 \mathrm{Din}=45 \mathrm{~m}\end{gathered}$

CAUTION: For an effective IP66 \& NEMA 4 X seal against dust and moisture, ensure gasket is well compressed
tongues located in the same ratchet slot.
Rear Terminal Wiring
USE COPPER CONDUCTORS (EXCEPT FOR T/C INPUT). CABLE RATING $80^{\circ} \mathrm{C}$ MIN Single Strand wire gauge: Max 1.2 mm (185 WGG)
The diagrams below show all possible option combinations. The actual
connections required depends on the exact model and options fifted. CAUTION: Check information label on housing for correct operating
voltage before connecting supply to Power Input
Fuse to . Fuse: $\begin{aligned} & 100-240 \mathrm{~V} \text { ac }-1 \text { Amp anti-surge } \\ & 24 / 4 \mathrm{~V} \text { ac/dc }-315 \mathrm{~mA} \text { anti-surge }\end{aligned}$

Note: At first power-up the message Coto Conf is displayed, as described in Note: At first power--up the message Loto Lonf is displayed, as described in
section for this manual. Access to other menus is denied until contiguration
mode is completed
2. SELECT MODE - SLCL
 Check manufacturing infor return automatically to Operator mode there is no key activity for 2 minutes.

3. CONFIGURATION MODE - CanF

 value. Press ${ }^{\text {Pate }}$ to accept the change, otherwise parameter will revert to previous
value. TT exit from Conifiguration mode, hold down \square and press \triangle, to return to value. T oext
Select mode.

	Display Dispoay		,			
${ }_{\text {Input }}^{\text {Range/Type }}$	mPt	See following table for possible codes			uc	
de $\begin{array}{l}\text { lnput Type \& } \\ \text { Range }\end{array}$		Code	Input Type \& Range			
B: $100-1824{ }^{\text {C }}$		L.	L: $0.0-537.7{ }^{\text {P }}$	P24F		
B: $211-3315$ ¢		$L_{\text {L }} \mathrm{F}$	L:32.0-999.9 ¢	Pe4F $32-3362$		
$20^{\circ} \mathrm{C}$		ac	$\mathrm{N}: 0-1399{ }^{\circ} \mathrm{C}$	PEC P P100:-19	9-800 ${ }^{\circ} \mathrm{C}$	
CF C: $32-4208$		AF	N: $32-2551$ ¢	PEF PH100:-38	-1472 8	
J: $-200-1200^{\circ} \mathrm{C}$		r	R: $0-1759{ }^{\circ} \mathrm{C}$	Pt, P Pritoo:-1	-	
$\mathrm{J}-328-2192 \mathrm{~F}$		rf	R:32-3198		99.9-99,	
$\mathrm{J}:-128.8$ - 537.79 C		5 L	s: $0-1762^{\circ} \mathrm{C}$	0.20 mADC		
J: -199.9-999.9 9		SF	S: $32-3204$ 9	4-20 mADC		
K: $-240-1373^{\circ} \mathrm{C}$		EL	T: $-240-400{ }^{\circ} \mathrm{C}$	0.500 .50	-50 mV DC	
K: -400-2503 8F		tf	T: - $400-752$ \%	$10.5010-50$. 50 mV DC	
K: $-128.8-537.7^{\circ} \mathrm{C}$		E.C	T:-128.8-400.0	$0.50-5$	5 VDC	
999.9		t, F	T: -199.9-752.09	1.51 .5	5 VDC	
L: $0.762^{\circ} \mathrm{C}$				0.100 .10	10 VDC	
-1403 ${ }^{\text {P }}$			$-1850^{\circ} \mathrm{C}$	2. $102 \cdot 10 \mathrm{VDC}$		
Note: Decimal point shown in table indicates temperature resolutio						
Parameter	Lower Display	$\begin{array}{\|l\|} \hline \text { Upper } \\ \text { Display } \end{array}$	Adjustment range \& Description		Default Value	
Scale Range Upper Limit	rul	Scale Range Lower Limit +100to Range Maximum			Range max (Lin=1000)	
Scale Range Lower Limit	rLL	Range Minimum to Scale Range Upper Limit -100			Range min	
Decimal point position	dPo5	0=xxxx, $1=x x x . x, 2=x X . x x, ~ 3=x . x x x$ (non-temperature ranges only)				
Process Variable Offset	OFF5	\pm Span of controller				
Limit Action		High Limit. Limit relay is energised when process "safe" (PV < Limit Setpoint)				
		Lo	Low Limit Limit relay is energised when process "safe" (PV > Limit Setpoin)			
Setpoint Upper Limit	SPuL	Current Setpoint to Scale Range maximum				
Setpoint Lower Limit	SPLL	Scale Range minimum to Current Setpoint				
Alarm 1Type	ALA I	P.H	Process High Alarm		P-H	
		P.Lo	Process Low Alarm			
		dE				
		bfnc	Band Alarm			
		nonE				
High Alarm 1 value*	PhR	Scaled Range Minimum to scaled Range Maximum in display units			Range	
$\begin{aligned} & \text { Law Alarm } 1 \\ & \text { Loduax }^{*} \end{aligned}$	PLAI				Range Min	
Band Alarm value*	bfl 1	1 LSD to span from setpoint in display units				
Dev. Alarm 1 value*	dALI	+/-Span from setpoint in display units				
Alarm 1 Hysteresis*	яну	1 LSD to full span in display units				

Parameter	Lower	$\begin{aligned} & \text { Upper } \\ & \text { Display } \end{aligned}$	Adjustment range \& Description	Default Value
Alarm 2 Type*	flat	Options as for alarm 1		P.Lo
High Alarm 2 value*	Phat			Range M
Low Alarm 2	Plaz			Range Min
Band Alarm 2 value*	bALL			
Dev. Alarm 2 Value*	dfle			5
Alarm 2	هНЧе			
Output 2 Usage	USEE	LPAt	Limit Output Relay	A I_d
		Alıd	Alarm 1, Direct	
		A l-r	Alarm 1, Reverse	
		R2.d	Alarm 2, Direct	
		AL-r	Alarm 2, Reverse	
		Or.d	Logical Alarm 1 OR 2, Direct	
		Or-r	Logical Alarm 1 OR 2, Reverse	
		Ad_d	Logical Alarm 1 AND 2, Direct	
		Ad_r	Logical Alarm 1 AND 2, Reverse	
		Pn-d	Limit Annunciator, Direct	
		Anor	Limit Annunciator, Reverse	
		rEtS	Retransmit Limit SP Output	rEtP
		rEtP	Retransmit PV Output	
Linear Output 2Range	type	0.5	0 to 5 V DC output 1	0. 10
		0. 10	0 to 10 V DC output	
		2. 10	2 to 10 VDC output	
		0.20	0 to 20 mA DC output	
		4.20	4 to 20 mA DC output	
Retransmit Output 2 Scale	rozH		-1999 to 9999 (display value at which output	Range max
Retransmit Output 2 Scale minimum	roct		$\begin{aligned} & \text {-1999 to o whe } \\ & \text { (display value at hich output } \\ & \text { will be minimum) } \end{aligned}$	Range mis
Output 3 Usage	U56		As for output 2	AI_d
Linear Output 3 Range	EYP3		As for output 2	0.10
Retransmit Output 3 Scale maximum	ro3H		$\begin{aligned} & \text {-1999 to 09999 } \\ & \text { (display value at which output } \\ & \text { will be maximum) } \end{aligned}$	Range
$\begin{aligned} & \text { Retransmit } \\ & \text { Output } 3 \text { Scale } \end{aligned}$ minimum	ro3t		$\begin{aligned} & -1999 \text { to o 9999 } \\ & \begin{array}{l} \text { (display value at which output } \\ \text { will be minimum) } \end{array} \end{aligned}$	Range min
Display Strategy	disp	Enfb	PV is visible in Operator mode	Enfb
		d, 5A	PV not visible in Operator mode	
		SAFE	Displays SAFE in Operator mode when Limit Output is not active	
Serial Communications Protocol	Prot	RSC I	ASCII	mfon
		ffibn	Modbus with no parity	
		mabe	Modbus with Even Parity	
		flbo	Modbus with Odd Parity	
Serial Communications Bit Rate	bhud	1.2	1.2 kbps	4.8
		2.4	2.4 kbps	
		4.8	4.8 kbps	
		9.6	9.6 kbps	
		19.2	19.2 kbps	
Comms Address	Addr		to 255 (Modbus), 1 to 99 (ASCII)	
Comms Write	CoEn	r.hu	ReadWrite	.u
	CoEn	r_0	Read only	
Configuration Lock Code	Cloc		0 to 9999	20

Notes: Output 1 is always a Latching Limit Relay outpu
Notes: Output is always a Latching Limit Relay output.
If Otion Slot A has the Digital Input modul
Remotet Resed, thuplicatis this always
As as CAUTION: Process Variable Offset can be used to modify the
measured value to compensate for probe errors. Positive value measured value or compensate for probe errorrs. Positive values
increase the reading, negative values are subtracted. This parameta increase the reading, negative values are subtracted. This parameter
is effectively, a calibration adjustment and WUST be used with care. There is no front panel indication of when this parameter is in use.

4．SETUP MODE－SEtP						
Note：Configuration must be completed before adjusting Setup parameters． First select Setup mode from Select mode（refer to section 2）．The Setup LED S will light while in Setup mode．Press \supset to scroll through the parameters， then press \triangle or ∇ to set the required value． Δ to return to Select mode． Note：Parameters displayed depends on how instrument has been configured．						
Parameter	$\begin{aligned} & \hline \text { Lower } \\ & \text { Disslav } \end{aligned}$	Upper Display Adjustment Range \＆Description		$\begin{array}{\|c} \hline \text { Default } \\ \text { Value } \end{array}$		
Limit Setpoint value	$5 P$	Scaled Range Minimum to scaled Range Maximum				
Limit Hysteresis	HYSE	1 LSD to full span in display units， on the sate side of the limit SP				
Input Filter Time Const	F Lt	OFF or 0.5 to 100.0 secs （see CAUTION note below）		0		
High Alarm 1 value	PhRI	Scaled Range Minimum to scaled Range Maximum				
Low Alarm 1 value	PLAI			R／min		
Deviation Alarm 1 Value	dRLI 1	\pm Span from SP in display units				
Band Alarm 1 value	bfl I	1 LSD to span from setpoint				
Alarm 1 Hysteresis	АнН I	1 LSD to full span in display units				
High Alarm 2 value	PhRE	Scaled Range Minimum to scaled Range Maximum				
Low Alarm 2 value	Plat			R／min		
Deviation Alarm 2 V	dfle	\pm Span from SP in display units				
Band Alarm 2 value	bfle	1 LSD to span from setpoint				
Alarm 2 Hysteresis	Loc	1 LSD to full span in display units				
Setup Lock Code			0 to 9999			
Note：Operator mode screens follow，without exiting from Setup mod						
！ CAUTION：An excessively large filter time could significantly delay detection of a limit condition．Set this value to the minimum required to remove noise from the process variable．						
5．PRODUCT INFORMATION MODE－info						
First select Product information mode from Select mode（refer to section 2）． Press \bigcirc to view each parameter．To exit from Product Information mode， hold down \bigcirc and press Δ to return to Select mode． Note：These parameters are all read only．						
Parameter	$\begin{array}{\|l\|} \hline \text { Lower } \\ \text { Display } \\ \hline \end{array}$	$\begin{aligned} & \text { Upper } \\ & \text { Display } \end{aligned}$	Description			
Input type	In＿1	Un，	Universal input			
Option 1 type（fixed）	OPn^{1}	rly	Latching Limit Relay			
Option 2 module type fitted	0 Pne	nonE	No option fitted			
		rLY	Relay output			
		55	SSR drive output			
		tr	Triac output			
		Lin	Linear DC voltage／current output			
Option 3 module type fitted	0Pn3	nonE	No option fitted			
		rly	RSR drive output			
		55				
		Lin	Linear DC voltage／current output			
		dect	Transmitter power supply			
Auxiliary Option A module type fitted	DPnA	nonE	No option fitted			
		$\stackrel{485}{ }$	RS485 communications			
		dic．	Digital Input for re	mote reset		
Firmware type	Flu	Value displayed is firmware type number				
Firmware issue	155	Value displayed is firmware issue number				
Product Revision Leve	PrL	$\frac{\text { Value displayed is Product Revision level }}{\text { Manufacturing date code（mmyy）}}$				
Date of manufact	d0ph					
Serial number 1	5 l	First four digits of serial number				
Serial number 2	5 n 2	Middle four digits of serial number				
erial number 3	5 n 3					

7．OPERATOR MODE－OPLR
7．This mode is entered at power on，or accessed from Select mode（see section 2 ）． required before starting normal operations
Press \cap to scroll through the parameters

$\begin{array}{\|l} \text { Upper } \\ \text { Display } \end{array}$	$\begin{aligned} & \text { Lower } \\ & \text { Display } \end{aligned}$	$\begin{gathered} \text { Display Strategy and } \\ \text { When Visible } \end{gathered}$	Description
PV Value	$\begin{gathered} \text { Limit SP } \\ \text { Value } \end{gathered}$	$\begin{aligned} & d .5 P=E n R b \\ & \text { (initial screen) } \end{aligned}$	Setpoint values Read only
	（Blank）	$\begin{aligned} & \text { d, sP } \begin{array}{l} \text { dish } \\ \text { (initial screen) } \end{array} \end{aligned}$	Limit Setpoint value Read only
$\begin{aligned} & \text { SAFE or } \\ & \text { r-SEE } \end{aligned}$	$\begin{gathered} (\text { Blank } \\ \text { op } \\ \text { Value } \end{gathered}$	$\begin{aligned} & \text { d,SP= SAFE. } \\ & \text { (Initial Screen) } \end{aligned}$	Displays rSEE and PV if Limit Output is active or SAFE and blank if not active． R Read only Read onl
High Limit Hold	H Hd	$\underline{C t-L}=\mathrm{H}^{\prime}$	Highest PV value since this parameter was last resed． To reset，press ∇ for 5 seconds， display $=---2$ when reset
$\begin{array}{\|l\|l\|} \text { Low Limit } \\ \text { Hold } \end{array}$	LoHd	$\underline{C t-L}=$ Lo	Lowest PV value since this To reset，press ∇ for 5 seconds， display $=-$－－when reset
Exceed Time Value	t.	Always available Format m m．．ss to 99.59 then mmm．s． （10 sece increments） Shows $[H H]$ if ≥ 999.9	
Active Alarm Status	ALSt	When one or more alarms are active． ALM indicator will also flash	

> Exceed Condition
 L．e． $\mathrm{PV}>\mathrm{SP}$ when set or high imit action， $\mathrm{PV}<\mathrm{SP}$ tor ow limit action）．
Limis on during this condition，and is extinguished once it has passed．
Limit Output Function
Limit Output Functio
Limit Output relay（s）de－energise whenever an Exceed condition occurs，causing
the process to shut down．The
TUW LED is on when the relay is de－energised．

 energise the relay，allowing the pr
An Annunciator output will activate when an Exceed condition occurs，and wil
remain active until a reset instruction is received，or the Exceed condition has remain active until a resit instruction is received，or the Exceed condition has
passed．Unike the Limit output，an Annunciator can be resest even it the Exceed condition is resesent．When tount，an Annunnunciator can be reset even it the Exceed
Alatior is active，the \mathbf{W} LyD will flash and the
Alam Status screen is availiabe． Alarm Status screen is available．
A reset instruction can be given by pressing the $⿴ 囗 ⿰ 丿 ㇄$
fited）ory，via the Digital Input lif Annunciators will deactivate．Limit Outputs will only re－energise it the Exceed Annunciators will dea
condition has passed

CAUTION：Ensure that the cause of the Exceed condition has been
rectified before resetting the Limit output．
8．SERIAL COMMUNICATIONS
Refer to the full user guide（available from your supplier）for details．

9．SPECIFICATION

UNIVERSAL INPUT

$\begin{array}{ll}\text { Thermocouple } \\ \text { Calibation：} & \begin{array}{l} \pm 0.1 \% \text { of full range，} \pm 1 \text { LSD }\left(\pm 1^{\circ} \mathrm{C} \text { for Thermocouple CJC }\right. \\ \text { BS4937，}\end{array} \text { NBS } 125 \& 1 \text { EC554．}\end{array}$
PT100 Calibration：$\pm 0.1 \%$ of full range，± 1 LSD．
DC Calibration：BS1904 \＆DIN43760（0．003855／／／$\left./^{\circ} \mathrm{C}\right)$ ．
Sampling Rate：$\quad \pm 0.1 \%$ of full range，± 1 LSD ．
Sampling Rat
䢂 resistive，except DC $\mathrm{mA}(5 \Omega)$ and $V(47 \mathrm{~K} \Omega)$
$\begin{array}{ll}\text { Sensor Break } & \begin{array}{l}\text { Thermocouple，} \text { RTD，} 4 \text { to } 20 \mathrm{~mA}, 2 \text { to } 10 \mathrm{~V} \text { and } 1 \text { to } 5 \mathrm{~V} \text { ranges } \\ \text { only．Limit outpotst turn off（goes into Exceed condition），} \\ \text { Detection：}\end{array}\end{array}$ only．Limit outputs turn off（goos into Exceed condition），hig
alarms activat for thermocoupleRTTD sensor break，low
alarn
Isolated from all outputs（except SSR drivel）
Universal input must not be connected to operator accessible
 source．Supplem．
then be required．

digital input

Isolation：\quad Reinforced safety isolation from inputs and other outputs．

OUTPUTS
Contact Type \＆Latching limit control relay．Single pole double throw（SPDT）

Lifetime：
Isolation：
Alarm Relays
Contact Type
Contact Type
Rating：
Liffetim：
Isolation：
SSR Driver
Drive Capab
Isolation： 100,000 operations at rated voltage／／current．

Slot 2 or 3 position non－latathing alarm relay．
Single pole doubl throw（SDDT）： 2 A resistive
Single pole esouble throw（SPDT）；2A resistive at $120 / 240 \mathrm{VAC}$ ． $>500,000$ operations at rated voltage／current．

Capability：SSR drive voltage $>10 \mathrm{~V}$ into $500 \Omega \mathrm{~min}$
Isolatio
Triac
Not isolated from universal input or other SSR driver outputs．
Operating Voltage： 20 to $280 \mathrm{Vrms}(47$ to 63 Hz ）．
Current Rating： $\begin{aligned} & 0.01 \text { to } 1 \mathrm{~A} \text {（full cycle rms on－state＠} 25^{\circ} \mathrm{C} \text { ）；} \\ & \text { derates linearly above } 40^{\circ} \mathrm{C} \text { to } 0.5 \mathrm{~A} @ 80^{\circ} \mathrm{C}\end{aligned}$
Isolation：Reinforced safety isolation from inputs and other outputs．
${ }^{\mathrm{DC}}$ Resolution：
Isolation：
ransmitter PSU Reinforced safety isolation from inputs and other outputs．
Transmitter PSU
Power Rating：
Isolation：
to 28 V DC（ 24 V nominal）into 910Ω minimum resistance
SERIAL COMmunications
Physical：RS 485 ，at $1200,2400,4800,9600$ or 19200 bp
Selectable between Modbus and West ASCII．
You cannot connect both configuration port \＆RS485 port at the same time．
OPERATING CONDITIONS（FOR INDOOR USE）
Ambient
Temperatu
$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$（Operating），$-20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$（Storage）．
Relative Humidity： 20% to 95% non－condensing
Supply Voltage and $\begin{aligned} & <2000 \mathrm{~m} \\ & 100 \text { to } 240 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 7.5 \mathrm{VA} \\ & \text { Power }\end{aligned}$
（tor mains powered versions），or
20 to $48 \mathrm{VAC} 50 / 60 \mathrm{~Hz} 7.5 \mathrm{VA}$ or 22 to 65 VDC 5 W
environmental
$\begin{array}{ll}\text { Standards：} \quad \text { CE，UL，CUL，CSA \＆FM 3545，} 199 \\ \text { EM：} & \text { Complies with EN61326－1 }\end{array}$
Safety \quad Complies with UL61010－1 Edition 3 ，EN61010－1 Version 2010 Pollution Degree 2 Instalation Category II
Front Panel Sealing：Front to IP66 \＆NEMA 4 X when correctly mounted－refer to
Front Bezel Size：$\quad 1 / 16$ Din $=48 \times 48 \mathrm{~mm}, 1 / 8 \mathrm{Din}=96 \times 48 \mathrm{~mm}$
Depth Behind Pane： $1 / 1 / 4 \mathrm{Din}=96 \times 96 \mathrm{~mm}=110 \mathrm{~mm}, 1 / 8$ \＆ $1 / 4 \mathrm{Din}=100 \mathrm{~mm}$ ．
Weight：\quad ：

SUPPLEMENTARY INFORMATION FOR CSA Compliance shall not be impaired when fitted to the final installation．
－The body responsible for the instanlation is to ensure that supplementary insulation
Suitable for Installation Category II achieved when fully instaled suitable for Installation Category II i is achieved when fully installed．
－To avoid possible hazards，accessible conductive parts of the final in －To avoid possible azards，accessible conductive parts of the final instalation
should be protectivy earhhed in accordance with E NN61010 for Class 1 Equipme
－ －Output wiring should be within a Protectively Earthed cabinet．
Sensor sheaths should be bonded to protective earth or not be accessible． Sensor sheaths should be bonded to protective earth or not be accessible． －When fitted to the final installation，an IECC／CSA APPR ROVED disconnecting device
should be used to disconnect both LINE and NEUTRAL conductors simutaneously A clear instruction shall be provided not to position the equipment so that it is
difificult to operate the disconnecting device．

